Identification in Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying

Author:

Grelet Johann1,Benamar Abdelilah1,Teyssier Emeline1,Avelange-Macherel Marie-Hélène1,Grunwald Didier1,Macherel David1

Affiliation:

1. Unité Mixte de Recherche 1191 Physiologie Moléculaire des Semences, Université d'Angers/INH/Institut National de la Recherche Agronomique, ARES, 49045 Angers cedex 01, France (J.G., A.B., E.T., M.-H.A.-M., D.M.); and Laboratoire Canaux Ioniques et Signalisation, Institut National de la Santé et de la Recherche Médicale EMI 9931, DRDC, Commissariat à l'Energie Atomique, 38054 Grenoble cedex

Abstract

Abstract Late-embryogenesis abundant (LEA) proteins are hydrophilic proteins that accumulate to a high level in desiccation-tolerant tissues and are thus prominent in seeds. They are expected to play a protective role during dehydration; however, functional evidence is scarce. We identified a LEA protein of group 3 (PsLEAm) that was localized within the matrix space of pea (Pisum sativum) seed mitochondria. PsLEAm revealed typical LEA features such as high hydrophilicity and repeated motifs, except for the N-terminal transit peptide. Most of the highly charged protein was predicted to fold into amphiphilic α-helixes. PsLEAm was expressed during late seed development and remained in the dry seed and throughout germination. Application of the stress hormone abscisic acid was found to reinduce the expression of PsLEAm transcripts during germination. PsLEAm could not be detected in vegetative tissues; however, its expression could be reinduced in leaves by severe water stress. The recombinant PsLEAm was shown to protect two mitochondrial matrix enzymes, fumarase and rhodanese, during drying in an in vitro assay. The overall results constitute, to our knowledge, the first characterization of a LEA protein in mitochondria and experimental evidence for a beneficial role of a LEA protein with respect to proteins during desiccation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3