AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta

Author:

Rus Ana1,Lee Byeong-ha1,Muñoz-Mayor Alicia1,Sharkhuu Altanbadralt1,Miura Kenji1,Zhu Jian-Kang1,Bressan Ray A.1,Hasegawa Paul M.1

Affiliation:

1. Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907–2010 (A.R., A.S., K.M., R.A.B., P.M.H.); Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (B.-h.L., J.-K.Z.); and Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, 30100–Murcia, Spain (

Abstract

Abstract Genetic and physiological data establish that Arabidopsis AtHKT1 facilitates Na+ homeostasis in planta and by this function modulates K+ nutrient status. Mutations that disrupt AtHKT1 function suppress NaCl sensitivity of sos1-1 and sos2-2, as well as of sos3-1 seedlings grown in vitro and plants grown in controlled environmental conditions. hkt1 suppression of sos3-1 NaCl sensitivity is linked to higher Na+ content in the shoot and lower content of the ion in the root, reducing the Na+ imbalance between these organs that is caused by sos3-1. AtHKT1 transgene expression, driven by its innate promoter, increases NaCl but not LiCl or KCl sensitivity of wild-type (Col-0 gl1) or of sos3-1 seedlings. NaCl sensitivity induced by AtHKT1 transgene expression is linked to a lower K+ to Na+ ratio in the root. However, hkt1 mutations increase NaCl sensitivity of both seedlings in vitro and plants grown in controlled environmental conditions, which is correlated with a lower K+ to Na+ ratio in the shoot. These results establish that AtHKT1 is a focal determinant of Na+ homeostasis in planta, as either positive or negative modulation of its function disturbs ion status that is manifested as salt sensitivity. K+-deficient growth of sos1-1, sos2-2, and sos3-1 seedlings is suppressed completely by hkt1-1. AtHKT1 transgene expression exacerbates K+ deficiency of sos3-1 or wild-type seedlings. Together, these results indicate that AtHKT1 controls Na+ homeostasis in planta and through this function regulates K+ nutrient status.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3