Genome-Wide Analysis of Gene Expression Profiles Associated with Cell Cycle Transitions in Growing Organs of Arabidopsis

Author:

Beemster Gerrit T.S.1,De Veylder Lieven1,Vercruysse Steven1,West Gerrit1,Rombaut Debbie1,Van Hummelen Paul1,Galichet Arnaud1,Gruissem Wilhelm1,Inzé Dirk1,Vuylsteke Marnik1

Affiliation:

1. Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium (G.T.S.B., L.D.V., S.V., G.W., D.R., D.I., M.V.); Microarray Facility, Flanders Interuniversity Institute for Biotechnology, 3000 Louvain, Belgium (P.V.H.); and Institute of Plant Sciences, Swiss Federal Institute of Plant Sciences, Swiss Federal Institute of Technolo

Abstract

Abstract Organ growth results from the progression of component cells through subsequent phases of proliferation and expansion before reaching maturity. We combined kinematic analysis, flowcytometry, and microarray analysis to characterize cell cycle regulation during the growth process of leaves 1 and 2 of Arabidopsis (Arabidopsis thaliana). Kinematic analysis showed that the epidermis proliferates until day 12; thereafter, cells expand until day 19 when leaves reach maturity. Flowcytometry revealed that endoreduplication occurs from the time cell division rates decline until the end of cell expansion. Analysis of 10 time points with a 6k-cDNA microarray showed that transitions between the growth stages were closely reflected in the mRNA expression data. Subsequent genome-wide microarray analysis on the three main stages allowed us to categorize known cell cycle genes into three major classes: constitutively expressed, proliferative, and inhibitory. Comparison with published expression data obtained from root zones corresponding to similar developmental stages and from synchronized cell cultures supported this categorization and enabled us to identify a high confidence set of 131 proliferation genes. Most of those had an M phase-dependent expression pattern and, in addition to many known cell cycle-related genes, there were at least 90 that were unknown or previously not associated with proliferation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3