Production of Reactive Oxygen Intermediates (O2  ˙−, H2O2, and ˙OH) by Maize Roots and Their Role in Wall Loosening and Elongation Growth

Author:

Liszkay Anja1,van der Zalm Esther1,Schopfer Peter1

Affiliation:

1. Institut für Biologie II der Universität, D–79104 Freiburg, Germany

Abstract

Abstract Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O2  ˙−) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals (˙OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O2  ˙−, H2O2, and ˙OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O2  ˙− production. (3) Experimental generation of ˙OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by ˙OH produced by endogenous cell wall peroxidase in the presence of NADH and H2O2. (4) Inhibition of endogenous ˙OH formation by O2  ˙− or ˙OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate ˙OH, and to respond to ˙OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that ˙OH formation is essential for normal root growth.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3