Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment and K+ Homeostasis in Pollen Development

Author:

Sze Heven1,Padmanaban Senthilkumar1,Cellier Françoise1,Honys David1,Cheng Ning-Hui1,Bock Kevin W.1,Conéjéro Genevieve1,Li Xiyan1,Twell David1,Ward John M.1,Hirschi Kendal D.1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742–5815 (H.S., S.P., K.W.B., X.L.); Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004 Institute National de la Recherche Agronomique/Centre National de la Recherche Scientifique/AgroM/Université Montpellier II, 34060 Montpellier cedex, France (F.C., G.C.); Laborato

Abstract

Abstract A combined bioinformatic and experimental approach is being used to uncover the functions of a novel family of cation/H+ exchanger (CHX) genes in plants using Arabidopsis as a model. The predicted protein (85–95 kD) of 28 AtCHX genes after revision consists of an amino-terminal domain with 10 to 12 transmembrane spans (approximately 440 residues) and a hydrophilic domain of approximately 360 residues at the carboxyl end, which is proposed to have regulatory roles. The hydrophobic, but not the hydrophilic, domain of plant CHX is remarkably similar to monovalent cation/proton antiporter-2 (CPA2) proteins, especially yeast (Saccharomyces cerevisiae) KHA1 and Synechocystis NhaS4. Reports of characterized fungal and prokaryotic CPA2 indicate that they have various transport modes, including K+/H+ (KHA1), Na+/H+-K+ (GerN) antiport, and ligand-gated ion channel (KefC). The expression pattern of AtCHX genes was determined by reverse transcription PCR, promoter-driven β-glucuronidase expression in transgenic plants, and Affymetrix ATH1 genome arrays. Results show that 18 genes are specifically or preferentially expressed in the male gametophyte, and six genes are highly expressed in sporophytic tissues. Microarray data revealed that several AtCHX genes were developmentally regulated during microgametogenesis. An exciting idea is that CHX proteins allow osmotic adjustment and K+ homeostasis as mature pollen desiccates and then rehydrates at germination. The multiplicity of CHX-like genes is conserved in higher plants but is not found in animals. Only 17 genes, OsCHX01 to OsCHX17, were identified in rice (Oryza sativa) subsp. japonica, suggesting diversification of CHX in Arabidopsis. These results reveal a novel CHX gene family in flowering plants with potential functions in pollen development, germination, and tube growth.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3