Deficiency of a Plastidial Adenylate Kinase in Arabidopsis Results in Elevated Photosynthetic Amino Acid Biosynthesis and Enhanced Growth

Author:

Carrari Fernando1,Coll-Garcia Danahe1,Schauer Nicolas1,Lytovchenko Anna1,Palacios-Rojas Natalia1,Balbo Ilse1,Rosso Mario1,Fernie Alisdair R.1

Affiliation:

1. Department Willmitzer, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (F.C., D.C.-G., N.S., A.L., N.P.-R., I.B., A.R.F.); and GABI-Kat, Max-Planck-Institut für Züchtungsforschung, D–50829 Cologne, Germany (M.R.)

Abstract

Abstract An Arabidopsis (Arabidopsis thaliana) L. Heynh mutant deficient in an isoform of adenylate kinase (ADK; At2g37250) was isolated by reverse genetics. It contains a T-DNA insertion 377 bp downstream of the start point of transcription. The mutant lacks At2g37250 transcripts and has a mild reduction in total cellular ADK activity. Green fluorescent protein-fusion based cellular localization experiments, carried out with the full-length At2g37250, suggested a plastidial localization for this isoform. In keeping with this observation, organelle isolation experiments revealed that the loss in ADK activity was confined to the inner plastid. This plastid stroma ADK gene was found to be expressed tissue constitutively but at much higher levels in illuminated leaves. Phenotypic and biochemical analyses of the mutant revealed that it exhibited higher amino acid biosynthetic activity in the light and was characterized by an enhanced root growth. When the mutant was subjected to either continuous light or continuous dark, growth phenotypes were also observed in the shoots. While the levels of adenylates were not much altered in the leaves, the pattern of change observed in the roots was consistent with the inhibition of an ATP-consuming reaction. Taken together, these data suggest a role for the plastid stromal ADK in the coordination of metabolism and growth, but imply that the exact importance of this isoform is tissue dependent.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3