Characterization of Anion Channels in the Plasma Membrane of Arabidopsis Epidermal Root Cells and the Identification of a Citrate-Permeable Channel Induced by Phosphate Starvation

Author:

Diatloff Eugene1,Roberts Michael1,Sanders Dale1,Roberts Stephen K.1

Affiliation:

1. Department of Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (E.D., M.R., S.K.R.); and Biology Department, University of York, York YO10 5YW, United Kingdom (D.S.)

Abstract

Abstract Organic-acid secretion from higher plant roots into the rhizosphere plays an important role in nutrient acquisition and metal detoxification. In this study we report the electrophysiological characterization of anion channels in Arabidopsis (Arabidopsis thaliana) root epidermal cells and show that anion channels represent a pathway for citrate efflux to the soil solution. Plants were grown in nutrient-replete conditions and the patch clamp technique was applied to protoplasts isolated from the root epidermal cells of the elongation zone and young root hairs. Using SO42− as the dominant anion in the pipette, voltage-dependent whole-cell inward currents were activated at membrane potentials positive of −180 mV exhibiting a maximum peak inward current (Ipeak) at approximately −130 mV. These currents reversed at potentials close to the equilibrium potential for SO42−, indicating that the inward currents represented SO42− efflux. Replacing intracellular SO42− with Cl− or NO3− resulted in inward currents exhibiting similar properties to the SO42− efflux currents, suggesting that these channels were also permeable to a range of inorganic anions; however when intracellular SO42− was replaced with citrate or malate, no inward currents were ever observed. Outside-out patches were used to characterize a 12.4-picoSiemens channel responsible for these whole-cell currents. Citrate efflux from Arabidopsis roots is induced by phosphate starvation. Thus, we investigated anion channel activity from root epidermal protoplasts isolated from Arabidopsis plants deprived of phosphate for up to 7 d after being grown for 10 d on phosphate-replete media (1.25 mm). In contrast to phosphate-replete plants, protoplasts from phosphate-starved roots exhibited depolarization-activated voltage-dependent citrate and malate efflux currents. Furthermore, phosphate starvation did not regulate inorganic anion efflux, suggesting that citrate efflux is probably mediated by novel anion channel activity, which could have a role in phosphate acquisition.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3