Oxidative Stress-Induced Calcium Signaling in Arabidopsis

Author:

Rentel Maike C.1,Knight Marc R.1

Affiliation:

1. Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom

Abstract

Abstract Many environmental stresses result in increased generation of active oxygen species in plant cells. This leads to the induction of protective mechanisms, including changes in gene expression, which lead to antioxidant activity, the recovery of redox balance, and recovery from damage/toxicity. Relatively little is known about the signaling events that link perception of increased active oxygen species levels to gene expression in plants. We have investigated the role of calcium signaling in H2O2-induced expression of the GLUTATHIONE-S-TRANSFERASE1 (GST1) gene. Challenge with H2O2 triggered a biphasic Ca2+ elevation in Arabidopsis seedlings. The early Ca2+ peak localized to the cotyledons, whereas the late Ca2+ rise was restricted to the root. The two phases of the Ca2+ response were independent of each other, as shown by severing shoot from root tissues before H2O2 challenge. Modulation of the height of Ca2+ rises had a corresponding effect upon H2O2-induced GST1 expression. Application of the calcium channel blocker lanthanum reduced the height of the first Ca2+ peak and concomitantly inhibited GST1 expression. Conversely, enhancing the height of the H2O2-triggered Ca2+ signature by treatment with l-buthionine-[S,R]-sulfoximine (an inhibitor of glutathione synthesis) lead to enhancement of GST1 induction. This finding also indicates that changes in the cellular redox balance constitute an early event in H2O2 signal transduction as reduction of the cellular redox buffer and thus the cell's ability to maintain a high GSH/GSSG ratio potentiated the plant's antioxidant response.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3