Specific Binding of vf14-3-3a Isoform to the Plasma Membrane H+-ATPase in Response to Blue Light and Fusicoccin in Guard Cells of Broad Bean

Author:

Emi Takashi1,Kinoshita Toshinori1,Shimazaki Ken-ichiro1

Affiliation:

1. Department of Biology, Faculty of Sciences, Kyushu University, Ropponmatsu, Fukuoka 810–8560, Japan

Abstract

Abstract The plasma membrane H+-ATPase is activated by blue light with concomitant binding of the 14-3-3 protein to the C terminus in guard cells. Because several isoforms of the 14-3-3 protein are expressed in plants, we determined which isoform(s) bound to the H+-ATPase in vivo. Four cDNA clones (vf14-3-3a, vf14-3-3b,vf14-3-3c, and vf14-3-3d) encoding 14-3-3 proteins were isolated from broad bean (Vicia faba) guard cells. Northern analysis revealed that mRNAs encoding vf14-3-3a and vf14-3-3b proteins were expressed predominantly in guard cells. The 14-3-3 protein that bound to the H+-ATPase in guard cells had the same molecular mass as the recombinant vf14-3-3a protein. The H+-ATPase immunoprecipitated from mesophyll cell protoplasts, which had been stimulated by fusicoccin, coprecipitated with the 32.5-kD 14-3-3 protein, although three 14-3-3 isoproteins were found in mesophyll cell protoplasts. Digestions of the bound 14-3-3 protein and recombinant vf14-3-3a with cyanogen bromide gave the identical migration profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but that of vf14-3-3b gave a different profile. Mass profiling of trypsin-digested 14-3-3 protein bound to the H+-ATPase gave the predicted peptide masses of vf14-3-3a. Far western analysis revealed that the H+-ATPase had a higher affinity for vf14-3-3a than for vf14-3-3b. These results suggest that the 14-3-3 protein that bound to the plasma membrane H+-ATPase in vivo is vf14-3-3a and that it may play a key role in the activation of H+-ATPase in guard cells.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3