Affiliation:
1. Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
Abstract
Abstract
The impact of reduced sedoheptulose-1,7-bisphosphatase (SBPase) activity on photosynthetic capacity and carbohydrate status was examined during leaf expansion and maturation in antisense transgenic tobacco (Nicotiana tabacum L. cv Samsun) plants. In wild-type plants, photosynthetic capacity was lowest in young expanding leaves and reached a maximum in the fully expanded, mature leaves. In contrast, the transgenic antisense SBPase plants had the highest photosynthetic rates in the young expanding leaves and lowest rates in the mature leaves. In the mature, fully expanded leaves of the transgenic plants photosynthetic capacity was closely correlated with the level of SBPase activity. However, in the youngest leaves of the SBPase antisense plants, photosynthetic rates were close to, or higher than, those observed in wild-type plants, despite having a lower SBPase activity than the equivalent wild-type leaves. Reductions in SBPase activity affected carbohydrate levels in both the mature and young developing leaves. The overall trend was for decreased SBPase activity to lead to reductions in carbohydrate levels, particularly in starch. However, these changes in carbohydrate content were also dependent on the developmental status of the leaf. For example, in young expanding leaves of plants with the smallest reductions in SBPase activity, the levels of starch were higher than in wild-type plants. These data suggest that the source status of the mature leaves is an important determinant of photosynthetic development.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献