Maintaining Methylation Activities during Salt Stress. The Involvement of Adenosine Kinase

Author:

Weretilnyk Elizabeth A.1,Alexander Kristin J.1,Drebenstedt Martina1,Snider Jamie D.2,Summers Peter S.1,Moffatt Barbara A.2

Affiliation:

1. Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (E.A.W., K.J.A., M.D., P.S.S.); and

2. Biology Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (J.D.S., B.A.M.)

Abstract

Abstract Synthesis of the compatible osmolyte Gly betaine is increased in salt-stressed spinach (Spinacia oleracea). Gly betaine arises by oxidation of choline from phosphocholine. Phosphocholine is synthesized in the cytosol by three successiveS-adenosyl-Met-dependent N-methylations of phosphoethanolamine. With each transmethylation, a molecule ofS-adenosylhomo-Cys (SAH) is produced, a potent inhibitor of S-adenosyl-Met-dependent methyltransferases. We examined two enzymes involved in SAH metabolism: SAH hydrolase (SAHH) catabolizes SAH to adenosine plus homo-Cys and adenosine kinase (ADK) converts adenosine to adenosine monophosphate. In vitro SAHH and ADK activities increased incrementally in extracts from leaves of spinach plants subjected to successively higher levels of salt stress and these changes reflected increased levels of SAHH and ADK protein and transcripts. Another Gly betaine accumulator, sugar beet (Beta vulgaris), also showed salt-responsive increases in SAHH and ADK activities and protein whereas tobacco (Nicotiana tabacum) and canola (Brassica napus), which do not accumulate Gly betaine, did not show comparable changes in these enzymes. In spinach, subcellular localization positions SAHH and ADK in the cytosol with the phospho-base N-methyltransferase activities. Because SAHH activity is inhibited by its products, we propose that ADK is not a stress-responsive enzyme per se, but plays a pivotal role in sustaining transmethylation reactions in general by serving as a coarse metabolic control to reduce the cellular concentration of free adenosine. In support of this model, we grew Arabidopsis under a short-day photoperiod that promotes secondary cell wall development and found both ADK activity and transcript levels to increase severalfold.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3