Involvement of Cytochrome P450 in Glucosinolate Biosynthesis in White Mustard (A Biochemical Anomaly)

Author:

Bennett R. N.1,Kiddle G.1,Wallsgrove R. M.1

Affiliation:

1. Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden AL5 2JQ, United Kingdom

Abstract

Abstract One of the first steps in glucosinolate biosynthesis is the conversion of amino acids to their aldoximes. The biochemistry of this process is controversial, and several very different enzyme systems have been described. The major glucosinolate in white mustard (Sinapis alba) is sinalbin, which is derived from tyrosine via its aldoxime, and this conversion is catalyzed by a cytochrome P450 (Cyt P450) monooxygenase. Phenylethyl- and alkenylglucosinolates are also present in white mustard leaves, as are the enzymes catalyzing the relevant aldoxime formation from homophenylalanine and methionine homologs, respectively. These enzymes are similar to those found in Brassica sp. and are distinct from the tyrosine-dependent enzyme in that they contain no heme and are unaffected by Cyt P450 inhibitors. They are instead inhibited by the flavoprotein inhibitor diphenylene iodonium and by Cu2+. In both white mustard and oilseed rape (Brassica napus) methyl jasmonate specifically stimulates indolylglucosinolate biosynthesis and yet has no effect on sinalbin accumulation in either cotyledons or leaves of white mustard. White mustard appears to be unique among crucifers in having a Cyt P450 aldoxime-forming enzyme for biosynthesis of one glucosinolate, although it also contains all of the non-Cyt P450 enzyme systems found in other members of the family. Sinalbin biosynthesis in white mustard is therefore an inappropriate model system for the synthesis of other glucosinolates in crucifers, including canola and oilseed rape.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3