Manipulation of Catalase Levels Produces Altered Photosynthesis in Transgenic Tobacco Plants1

Author:

Brisson Louise F.,Zelitch Israel1,Havir Evelyn A.1

Affiliation:

1. Department of Biochemistry and Genetics, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, Connecticut 06504

Abstract

Abstract Constructs containing the cDNAs encoding the primary leaf catalase inNicotiana or subunit 1 of cottonseed (Gossypium hirsutum) catalase were introduced in the sense and antisense orientation into the Nicotiana tabacum genome. TheN. tabacum leaf cDNA specifically overexpressed CAT-1, the high catalytic form, activity. Antisense constructs reduced leaf catalase specific activities from 0.20 to 0.75 times those of wild type (WT), and overexpression constructs increased catalase specific activities from 1.25 to more than 2.0 times those of WT. The NADH-hydroxypyruvate reductase specific activity in transgenic plants was similar to that in WT. The effect of antisense constructs on photorespiration was studied in transgenic plants by measuring the CO2 compensation point (Γ) at a leaf temperature of 38°C. A significant linear increase was observed in Γ with decreasing catalase (at 50% lower catalase activity Γ increased 39%). There was a significant temperature-dependent linear decrease in Γ in transgenic leaves with elevated catalase compared with WT leaves (at 50% higher catalase Γ decreased 17%). At 29°C, Γ also decreased with increasing catalase in transgenic leaves compared with WT leaves, but the trend was not statistically significant. Rates of dark respiration were the same in WT and transgenic leaves. Thus, photorespiratory losses of CO2 were significantly reduced with increasing catalase activities at 38°C, indicating that the stoichiometry of photorespiratory CO2 formation per glycolate oxidized normally increases at higher temperatures because of enhanced peroxidation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3