Cell-Specific Expression of the Promoters of Two Nonlegume Hemoglobin Genes in a Transgenic Legume, Lotus corniculatus

Author:

Andersson C. R.1,Llewellyn D. J.1,Peacock W. J.1,Dennis E. S.1

Affiliation:

1. Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, G.P.O. Box 1600, Canberra, ACT 2601, Australia (C.R.A., D.J.L., W.J.P., E.S.D.)

Abstract

Abstract The promoters of the hemoglobin genes from the nitrogen-fixing tree Parasponia andersonii and the related nonnitrogen-fixing Trema tomentosa both confer β-glucuronidase reporter gene expression to the central zone of the nodules of a transgenic legume, Lotus corniculatus. β-Glucuronidase expression was high in the uninfected interstitial cells and parenchyma of the surrounding boundary layer and was low in the Rhizobium-infected cells. This contrasts with the expression of both the P. andersonii hemoglobin protein in P. andersonii nodules and the endogenous Lotus leghemoglobins that are expressed in the infected cells at very high levels. The expression pattern of the P. andersonii and T. tomentosa hemoglobin promoters in L. corniculatus resembles that of a nonsymbiotic hemoglobin gene from Casuarina glauca, which was introduced into this legume, and suggests that only the nonsymbiotic functions of the P. andersonii promoter are being recognized. Deletion of the distal segments of both the P. andersonii and T. tomentosa promoters identified regions important for the control of their tissue-specific and temporal activity in Lotus. Potential regulatory elements, which enhance nodule expression and suppress nonnodule expression, were also identified and localized to a distal promoter segment. A proximal AAGAG motif is present in the P. andersonii, T. tomentosa, and nonsymbiotic Casuarina hemoglobin genes. Mutation of this motif in the P. andersonii promoter resulted in a significant reduction in both the nodule and root expression levels in L. corniculatus. Some of the regulatory motifs characterized are similar to, but different from, the nodulin motifs of the leghemoglobins.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3