Affiliation:
1. Plant Physiology and Molecular Biology, Biocity A, University of Turku, FIN–20014 Turku, Finland (E.P., M.K., E.-M.A., E.T.); and
2. Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia (F.Š.)
Abstract
Abstract
Photoinhibition of photosystem II was studied in vivo with bean (Phaseolus vulgaris) plants grown in the presence of 0.3 (control), 4, or 15 μm Cu2+. Although photoinhibition, measured in the presence of lincomycin to block concurrent recovery, is faster in leaves of Cu2+-treated plants than in control leaves, thylakoids isolated from Cu-treated plants did not show high sensitivity to photoinhibition. Direct effects of excess Cu2+ on chloroplast metabolism are actually unlikely, because the Cu concentration of chloroplasts of Cu-treated plants was lower than that of their leaves. Excess Cu in the growth medium did not cause severe oxidative stress, collapse of antioxidative defenses, or loss of photoprotection. Thus, these hypothetical effects can be eliminated as causes for Cu-enhanced photoinhibition in intact leaves. However, Cu treatment lowered the leaf chlorophyll (Chl) concentration and reduced the thylakoid membrane network. The loss of Chl and sensitivity to photoinhibition could be overcome by adding excess Fe together with excess Cu to the growth medium. The addition of Fe lowered the Cu2+ concentration of the leaves, suggesting that Cu outcompetes Fe in Fe uptake. We suggest that the reduction of leaf Chl concentration, caused by the Cu-induced iron deficiency, causes the high photosensitivity of photosystem II in Cu2+-treated plants. A causal relationship between the susceptibility to photoinhibition and the leaf optical density was established in several plant species. Plant species adapted to high-light habitats apparently benefit from thick leaves because the rate of photoinhibition is directly proportional to light intensity, but photosynthesis becomes saturated by moderate light.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
289 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献