Zinc Deficiency Up-Regulates Expression of High-Affinity Phosphate Transporter Genes in Both Phosphate-Sufficient and -Deficient Barley Roots

Author:

Huang Chunyuan1,Barker Susan Jane2,Langridge Peter1,Smith Frank W.3,Graham Robin David1

Affiliation:

1. Department of Plant Science, The University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.H., P.L., R.D.G.);

2. Faculty of Agriculture, The University of Western Australia, Nedlands, Western Australia 6907, Australia (S.J.B.); and

3. Commonwealth Scientific and Industrial Research Organization Tropical Agriculture, Cunningham Laboratory, 306 Carmody Road, St. Lucia, Queensland 4067, Australia (F.W.S.)

Abstract

Abstract Phosphate (P) is taken up by plants through high-affinity P transporter proteins embedded in the plasma membrane of certain cell types in plant roots. Expression of the genes that encode these transporters responds to the P status of the plants, and their transcription is normally tightly controlled. However, this tight control of P uptake is lost under Zn deficiency, leading to very high accumulation of P in plants. We examined the effect of plant Zn status on the expression of the genes encoding the HVPT1 and HVPT2 high-affinity P transporters in barley (Hordeum vulgareL. cv Weeah) roots. The results show that the expression of these genes is intimately linked to the Zn status of the plants. Zn deficiency induced the expression of genes encoding these P transporters in plants grown in either P-sufficient or -deficient conditions. Moreover, the role of Zn in the regulation of these genes is specific in that it cannot be replaced by manganese (a divalent cation similar to Zn). It appears that Zn plays a specific role in the signal transduction pathway responsible for the regulation of genes encoding high-affinity P transporters in plant roots. The significance of Zn involvement in the regulation of genes involved in P uptake is discussed.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3