Requirement for the H Phosphoprotein in Photosystem II of Chlamydomonas reinhardtii

Author:

Summer E. J.1,Schmid VHR.1,Bruns B. U.1,Schmidt G. W.1

Affiliation:

1. Botany Department, University of Georgia, Athens, Georgia 30606–7271

Abstract

Abstract To dissect the expression of the psbB gene cluster of the Chlamydomonas reinhardtii chloroplast genome and to assess the role of the photosystem II H-phosphoprotein (PSII-H) in the biogenesis and/or stabilization of PSII, an aadA gene cassette conferring spectinomycin resistance was employed for mutagenesis. Disruption of the gene cluster has no effect on the abundance of transcripts of the upstream psbB/T locus. Likewise, interruption of psbB/T and psbH with a strong transcriptional terminator from the rbcL gene does not influence transcript accumulation. Thus, psbB/T and psbH may be independently transcribed, and the latter gene seems to have its own promoter in C. reinhardtii. In the absence of PSII-H, translation and thylakoid insertion of chloroplast PSII core proteins is unaffected, but PSII proteins do not accumulate. Because the deletion mutant also exhibits PSII deficiency when dark-grown, the effect is unrelated to photoinhibition. Turnover of proteins B and C of PSII and the polypeptides PSII protein A and PSII protein D is faster than in wild-type cells but is much slower than that observed in other PSII-deficient mutants of C. reinhardtii, suggesting a peripheral location of PSII-H in PSII. The role of PSII-H on PSII assembly was examined by sucrose gradient fractionation of pulse-labeled thylakoids; the accumulation of high-molecular-weight forms of PSII is severely impaired in the psbH deletion mutant. Thus, a primary role of PSII-H may be to facilitate PSII assembly/stability through dimerization. PSII-H phosphorylation, which possibly occurs at two sites, may also be germane to its role in regulating PSII structure, stabilization, or activity.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3