A Nuclear Casein Kinase 2 Activity Is Involved in Early Events of Transcriptional Activation Induced by Salicylic Acid in Tobacco

Author:

Hidalgo Perla1,Garretón Virginia1,Berrı́os Carmen Gloria1,Ojeda Héctor1,Jordana Xavier1,Holuigue Loreto1

Affiliation:

1. Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114–D, Santiago, Chile

Abstract

Abstract Salicylic acid (SA) activates immediate early transcription of genes controlled by a family of DNA promoter elements namedas-1-like elements. These elements are functional in the promoter of glutathione S-transferase genes. We have previously shown that SA increases the binding of tobacco (Nicotiana tabacum cv Xanthi nc) nuclear factors to theas-1 sequence in a process mediated by protein phosphorylation. In this study we give evidence for the participation of a nuclear protein kinase CK2 (casein kinase 2) in the pathway activated by SA in tobacco. The first line of evidence comes from the evaluation of the CK2 activity in nuclear extracts prepared from tobacco plants treated with SA or water as a control. Results from these experiments indicate that SA increases the nuclear CK2 activity. The second line of evidence derives from the evaluation of the in vivo effect of 5,6-dichloro-1-(β-d-ribofuranosyl) benzimidazole (DRB), a cell-permeable CK2 inhibitor, on the responsiveness of the as-1 sequence to SA. Results from these experiments indicate that DRB impairs the activating effect of SA on the transcription of both, the GUS reporter gene controlled by a tetramer of the as-1 element, and the endogenous gnt35 gene encoding a glutathioneS-transferase, in transgenic tobacco plants. DRB also impaired the increasing effect of SA on the binding of nuclear factors to the as-1 element. Furthermore, transcription of theas-1/GUS reporter gene activated by the synthetic auxin 2,4-dichlorophenoxyacetic acid and by methyl jasmonate was also inhibited by DRB. To our knowledge, this is the first report in which activation of a CK2 enzyme by a plant hormone is reported.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3