Regulation of a Wheat Actin-Depolymerizing Factor during Cold Acclimation

Author:

Ouellet François1,Carpentier Éric,Cope M. Jamie T.V.2,Monroy Antonio F.1,Sarhan Fathey1

Affiliation:

1. Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8 (F.O., E.C., A.F.M., F.S.); and Department of Molecular and Cellular Biology, University of California, 401 Barker Hall, Berkeley, California,

2. 94720–3202 (M.J.T.V.C.)

Abstract

Abstract We have previously shown that the wheat (Triticum aestivum) TaADF gene expression level is correlated with the plants capacity to tolerate freezing. Sequence analysis revealed that this gene encodes a protein homologous to members of the actin-depolymerizing factor (ADF)/cofilin family. We report here on the characterization of the recombinant TaADF protein. Assays for ADF activity showed that TaADF is capable of sequestering actin, preventing nucleotide exchange, and inducing actin depolymerization. In vitro phosphorylation studies showed that TaADF is a substrate for a wheat 52-kD kinase. The activity of this kinase is modulated by low temperature during the acclimation period. Western-blot analyses revealed that TaADF is expressed only in cold-acclimated Gramineae species and that the accumulation level is much higher in the freezing-tolerant wheat cultivars compared with the less tolerant ones. This accumulation was found to be regulated by a factor(s) encoded by a gene(s) located on chromosome 5A, the chromosome most often found to be associated with cold hardiness. The induction of an active ADF during cold acclimation and the correlation with an increased freezing tolerance suggest that the protein may be required for the cytoskeletal rearrangements that may occur upon low temperature exposure. These remodelings might be important for the enhancement of freezing tolerance.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3