Limited Correlation between Expansin Gene Expression and Elongation Growth Rate

Author:

Caderas Doina1,Muster Matthias1,Vogler Hannes1,Mandel Therese1,Rose Jocelyn K.C.2,McQueen-Mason Simon3,Kuhlemeier Cris1

Affiliation:

1. Institute of Plant Physiology, University of Berne, Altenbergrain 21, CH–3013 Berne, Switzerland (D.C., M.M., H.V., T.M., C.K.);

2. Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602–4712 (J.K.C.R.); and

3. The Plant Laboratory, Department of Biology, University of York, Heslington, York YO1 5YW, United Kingdom (S.M.-M.)

Abstract

Abstract The aim of this work was to study the role of the cell wall protein expansin in elongation growth. Expansins increase cell wall extensibility in vitro and are thought to be involved in cell elongation. Here, we studied the regulation of two tomato (Lycopersicon esculentum cv Moneymaker) expansin genes,LeExp2 and LeExp18, in rapidly expanding tissues. LeExp2 was strongly expressed in the elongation zone of hypocotyls and in the faster growing stem part during gravitropic stimulation. LeExp18 expression did not correlate with elongation growth. Exogenous application of hormones showed a substantial auxin-stimulation of LeExp2 mRNA in etiolated hypocotyls and a weaker auxin-stimulation ofLeExp18 mRNA in stem tissue. Analysis of transcript accumulation revealed higher levels of LeExp2 andLeExp18 in light-treated, slow-growing tissue than in dark-treated, rapidly elongating tissue. Expansin protein levels and cell wall extension activities were similar in light- and dark-grown hypocotyl extracts. The results show a strong correlation between expansin gene expression and growth rate, but this correlation is not absolute. We conclude that elongation growth is likely to be controlled by expansin acting in concert with other factors that may limit growth under some physiological conditions.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3