The Isolation and Characterization in Yeast of a Gene for Arabidopsis S-Adenosylmethionine:Phospho-EthanolamineN-Methyltransferase

Author:

Bolognese Cynthia P.1,McGraw Patricia1

Affiliation:

1. Department of Biological Sciences, University of Maryland, Baltimore, Maryland 21250

Abstract

Abstract Saccharomyces cerevisiae opi3 mutant strains do not have the phospholipid N-methyltransferase that catalyzes the two terminal methylations in the phosphatidylcholine (PC) biosynthetic pathway. This results in a build up of the intermediate phosphatidylmonomethylethanolamine, causing a temperature-sensitive growth phenotype. An Arabidopsis cDNA library was used to isolate three overlapping plasmids that complemented the temperature-sensitive phenotype. Phospholipid analysis showed that the presence of the cloned cDNA caused a 65-fold reduction in the level of phosphatidylmonomethylethanolamine and a significant, though not equivalent, increase in the production of PC. Sequence analysis established that the cDNA was not homologous to OPI3 or to CHO2, the only other yeast phospholipidN-methyltransferase, but was similar to several other classes of methyltransferases.S-adenosyl-Met:phospho-baseN-methyltransferase assays revealed that the cDNA catalyzed the three sequential methylations of phospho-ethanolamine to form phospho-choline. Phospho-choline is converted to PC by the CDP-choline pathway, explaining the phenotype conferred upon the yeast mutant strain by the cDNA. In accordance with this the gene has been named AtNMT1. The identification of this enzyme and the failure to isolate a plant phospholipidN-methyltransferase suggests that there are fundamental differences between the pathways utilized by yeast and by some plants for synthesis of PC.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3