Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2

Author:

Yamasaki H.1,Sakihama Y.1,Ikehara N.1

Affiliation:

1. Laboratory of Cell and Functional Biology, College of Science, University of the Ryukyus, Nishihara, Okinawa 903–01, Japan

Abstract

Abstract Recent studies have revealed that dietary flavonoids are potent radical scavengers, acting in a manner similar to ascorbate and α--tocopherol. However, it is still not clear whether flavonoids have a similar antioxidative function in plants. We examined the possibility that flavonoids could function as stress protectants in plant cells by scavenging H2O2. Two major flavonoids, quercetin and kaempferol glycosides, were isolated from leaves of the tropical tree Schefflera arboricola Hayata. Both glycosides and aglycones of isolated flavonols were oxidized by H2O2 in the presence of horse-radish peroxidase and/or in a soluble fraction of S. arboricola leaf extract. The rates of oxidation were in the order quercetin> kaempferol> quercetin glycoside>> kaempferol glycoside. Judging from the effects of inhibitors such as KCN, p-chloromercuribenzoate, and 3-amino-1H-1,2,4-triazole, we conclude that guaiacol peroxidase in the soluble fraction catalyzes H2O2-dependent oxidation of flavonols. In the flavonol-guaiacol peroxidase reaction, ascorbate had the potential to regenerate flavonols by reducing the oxidized product. These results provide further evidence that the flavonoid-peroxidase reaction can function as a mechanism for H2O2 scavenging in plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3