A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane

Author:

Wang Cunxi1,Wang Xuemin1

Affiliation:

1. Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506

Abstract

Abstract Oleate-dependent phospholipase D (PLD; EC 3.1.4.4) has been reported in animal systems, but its molecular nature is unkown. Multiple PLDs have been characterized in plants, but none of the previously cloned PLDs exhibits the oleate-activated activity. Here, we describe the biochemical and molecular identification and characterization of an oleate-activated PLD in Arabidopsis. This PLD, designated PLDδ, was associated tightly with the plasma membrane, and its level of expression was higher in old leaves, stems, flowers, and roots than in young leaves and siliques. A cDNA encoding the oleate-activated PLD was identified, and catalytically active PLDδ was expressed from its cDNA inEscherichia coli. PLDδ was activated by free oleic acid in a dose-dependent manner, with the optimal concentration being 0.5 mm. Other unsaturated fatty acids, linoleic and linolenic acids, were less effective than oleic acid, whereas the saturated fatty acids, stearic and palmitic acids, were totally ineffective. Phosphatidylinositol 4,5-bisphosphate stimulated PLDδ to a lesser extent than oleate. Mutation at arginine (Arg)-611 led to a differential loss of the phosphatidylinositol 4,5-bisphosphate-stimulated activity of PLDδ, indicating that separate sites mediate the oleate regulation of PLDδ. Oleate stimulated PLDδ's binding to phosphatidylcholine. Mutation at Arg-399 resulted in a decrease in oleate binding by PLDδ and a loss of PLDδ activity. However, this mutation bound similar levels of phosphatidylcholine as wild type, suggesting that Arg-399 is not required for PC binding. These results provide the molecular information on oleate-activated PLD and also suggest a mechanism for the oleate stimulation of this enzyme.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3