Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in Medicago truncatula Cell Cultures

Author:

Farag Mohamed A.1,Huhman David V.1,Dixon Richard A.1,Sumner Lloyd W.1

Affiliation:

1. Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (M.A.F., D.V.H., R.A.D., L.W.S.); and Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt (M.A.F.)

Abstract

Abstract High-performance liquid chromatography coupled to ultraviolet photodiode array detection and ion-trap mass spectrometry was used to analyze the intra- and extracellular secondary product metabolome of Medicago truncatula cell suspension cultures responding to yeast elicitor (YE) or methyl jasmonate (MeJA). Data analysis revealed three phases of intracellular response to YE: a transient response in mainly (iso)flavonoid metabolites such as formononetin and biochanin-A that peaked at 12 to 18 h following elicitation and then declined; a sustained response through 48 h for compounds such as medicarpin and daidzin; and a lesser delayed and protracted response starting at 24 h postelicitation, e.g. genistein diglucoside. In contrast, most compounds excreted to the culture medium reached maximum levels at 6 to 12 h postelicitation and returned to basal levels by 24 h. The response to MeJA differed significantly from that to YE. Although both resulted in accumulation of the phytoalexin medicarpin, coordinated increases in isoflavonoid precursors were only observed for YE and not MeJA-treated cells. However, MeJA treatment resulted in a correlated decline in isoflavone glucosides, and did not induce the secretion of metabolites into the culture medium. Three novel methylated isoflavones, 7-hydroxy-6,4′-dimethoxyisoflavone (afrormosin), 6-hydroxy-7,4′-dimethoxyisoflavone (alfalone), and 5,7-dihydroxy-4′,6-dimethoxy isoflavone (irisolidone), were induced by YE, and labeling studies indicated that the first two were derived from formononetin. Our results highlight the metabolic flexibility within the isoflavonoid pathway, suggest new pathways for complex isoflavonoid metabolism, and indicate differential mechanisms for medicarpin biosynthesis depending on the nature of elicitation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3