Genome-Wide Expression Profiling Arabidopsis at the Stage ofGolovinomyces cichoracearumHaustorium Formation

Author:

Fabro Georgina1,Di Rienzo Julio A.1,Voigt Christian A.1,Savchenko Tatyana1,Dehesh Katayoon1,Somerville Shauna1,Alvarez María Elena1

Affiliation:

1. CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas (G.F., M.E.A.) and Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias (J.A.D.R.), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina; Carnegie Institution, Department of Plant Biology, Stanford, California 94305 (C.A.V., S.S.); and Section of Plant Biology, University of California

Abstract

AbstractCompatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3