Transcript Profiling by 3′-Untranslated Region Sequencing Resolves Expression of Gene Families

Author:

Eveland Andrea L.1,McCarty Donald R.1,Koch Karen E.1

Affiliation:

1. Department of Horticultural Sciences, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, Florida 32611

Abstract

AbstractDifferences in gene expression underlie central questions in plant biology extending from gene function to evolutionary mechanisms and quantitative traits. However, resolving expression of closely related genes (e.g. alleles and gene family members) is challenging on a genome-wide scale due to extensive sequence similarity and frequently incomplete genome sequence data. We present a new expression-profiling strategy that utilizes long-read, high-throughput sequencing to capture the information-rich 3′-untranslated region (UTR) of messenger RNAs (mRNAs). Resulting sequences resolve gene-specific transcripts independent of a sequenced genome. Analysis of approximately 229,000 3′-anchored sequences from maize (Zea mays) ovaries identified 14,822 unique transcripts represented by at least two sequence reads. Total RNA from ovaries of drought-stressed wild-type and viviparous-1 mutant plants was used to construct a multiplex cDNA library. Each sample was labeled by incorporating one of 16 unique three-base key codes into the 3′-cDNA fragments, and combined samples were sequenced using a GS 20 454 instrument. Transcript abundance was quantified by frequency of sequences identifying each unique mRNA. At least 202 unique transcripts showed highly significant differences in abundance between wild-type and mutant samples. For a subset of mRNAs, quantitative differences were validated by real-time reverse transcription-polymerase chain reaction. The 3′-UTR profile resolved 12 unique cellulose synthase (CesA) transcripts in maize ovaries and identified previously uncharacterized members of a histone H1 gene family. In addition, this method resolved nearly identical paralogs, as illustrated by two auxin-repressed, dormancy-associated (Arda) transcripts, which showed reciprocal mRNA abundance in wild-type and mutant samples. Our results demonstrate the potential of 3′-UTR profiling for resolving gene- and allele-specific transcripts.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3