Kinetics and Mechanism of Dionaea muscipula Trap Closing

Author:

Volkov Alexander G.1,Adesina Tejumade1,Markin Vladislav S.1,Jovanov Emil1

Affiliation:

1. Department of Chemistry and Biochemistry, Oakwood University, Huntsville, Alabama 35896 (A.G.V., T.A.); Department of Neurology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390–9036 (V.S.M.); and Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, Alabama 35899 (E.J.)

Abstract

Abstract The Venus flytrap (Dionaea muscipula) possesses an active trapping mechanism to capture insects with one of the most rapid movements in the plant kingdom, as described by Darwin. This article presents a detailed experimental investigation of trap closure by mechanical and electrical stimuli and the mechanism of this process. Trap closure consists of three distinctive phases: a silent phase with no observable movement; an accelerated movement of the lobes; and the relaxation of the lobes in their closed state, resulting in a new equilibrium. Uncouplers and blockers of membrane channels were used to investigate the mechanisms of different phases of closing. Uncouplers increased trap closure delay and significantly decreased the speed of trap closure. Ion channel blockers and aquaporin inhibitors increased time of closing. Transmission of a single electrical charge between a lobe and the midrib causes closure of the trap and induces an electrical signal propagating between both lobes and midrib. The Venus flytrap can accumulate small subthreshold charges, and when the threshold value is reached, the trap closes. Repeated application of smaller charges demonstrates the summation of stimuli. The cumulative character of electrical stimuli points to the existence of electrical memory in the Venus flytrap. The observed fast movement can be explained by the hydroelastic curvature model without invoking buckling instability. The new hydroelastic curvature mechanism provides an accurate description of the authors' experimental data.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3