The Absence of ALTERNATIVE OXIDASE1a in Arabidopsis Results in Acute Sensitivity to Combined Light and Drought Stress

Author:

Giraud Estelle1,Ho Lois H.M.1,Clifton Rachel1,Carroll Adam1,Estavillo Gonzalo1,Tan Yew-Foon1,Howell Katharine A.1,Ivanova Aneta1,Pogson Barry J.1,Millar A. Harvey1,Whelan James1

Affiliation:

1. Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (E.G., L.H.M.H., R.C., A.C., Y.-F.T., K.A.H., A.I., A.H.M., J.W.); and Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capit

Abstract

Abstract Treatment of Arabidopsis (Arabidopsis thaliana) alternative oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compared with ecotype Columbia (Col-0), as evidenced by a 10-fold increase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and reduced root growth at the early stages of seedling growth. Analysis of metabolite profiles revealed significant changes upon treatment in aox1a plants typical of combined stress treatments, and these were less pronounced or absent in Col-0 plants. These changes were accompanied by alteration in the abundance of a variety of transcripts during the stress treatment, providing a molecular fingerprint for the stress-induced phenotype of aox1a plants. Transcripts encoding proteins involved in the synthesis of anthocyanins, transcription factors, chloroplastic and mitochondrial components, cell wall synthesis, and sucrose and starch metabolism changed, indicating that effects were not confined to mitochondria, where the AOX1a protein is located. Microarray and quantitative reverse transcription-polymerase chain reaction analysis revealed that transcripts typically induced upon stress treatment or involved in antioxidant defense systems, especially chloroplast-located antioxidant defense components, had altered basal levels in untreated aox1a plants, suggesting a significant change in the basal equilibrium of signaling pathways that regulate these components. Taken together, these results indicate that aox1a plants have a greatly altered stress response even when mitochondria or the mitochondrial electron transport chain are not the primary target of the stress and that AOX1a plays a broad role in determining the normal redox balance in the cell.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3