Synthesis of Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed Maturation

Author:

Wehmeyer N.1,Hernandez L. D.1,Finkelstein R. R.1,Vierling E.1

Affiliation:

1. Department of Biochemistry, University of Arizona, Tucson, Arizona 85721 (N.W., L.D.H., E.V.)

Abstract

Abstract Small heat-shock proteins (sHSPs) accumulate in plants in response to high-temperature stress. Specific sHSPs, the cytosolic class I and class II proteins, are also expressed in the absence of stress in maturing seeds of several species, and a role for these proteins in desiccation tolerance, dormancy, or germination has been hypothesized. We demonstrate that class I sHSPs are expressed during Arabidopsis seed development in a pattern similar to that previously observed in other species: they are first detected during mid-maturation, are most abundant in dry seeds, and decline rapidly during germination. Although the class I sHSP family in Arabidopsis appears to consist of four genes, expression of a single gene, Athsp17.4, accounts for the majority of sHSPs in maturing seeds. sHSP levels were also examined in seeds of several Arabidopsis mutants with reduced sensitivity to abscisic acid inhibition, including aba1, abi1 and abi2, abi3–1, abi3–6, abi4, and abi5–1. The abi3–1 mutant has 10-fold reduced levels of sHSPs; sHSPs are undetectable in the abi3–6 mutant. All other mutants were indistinguishable from wild type. These results suggest that sHSP expression in seeds is regulated by the ABI3 response pathway and wild-type levels of sHSPs are not sufficient for seed dormancy and not necessary for desiccation tolerance. However, roles in either process cannot be ruled out. In total the data indicate that the expression of sHSPs in seeds is part of the normal developmental program of late seed maturation and the presence of sHSPs has adaptive significance for plant reproduction.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3