Affiliation:
1. Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
Abstract
Abstract
Reactive oxygen species (ROS) have been characterized as both important signaling molecules and universal stressors that mediate many developmental and physiological responses. So far, details of the transcriptional mechanism of ROS-responsive genes are largely unknown. In the study reported here, we identified seven potential ROS-responsive cis-acting elements (ROSEs) from the promoters of genes up-regulated by ROS in Arabidopsis (Arabidopsis thaliana). We also found that the APETALA2/ethylene-responsive element binding factor6 (ERF6) could bind specifically to the ROSE7/GCC box. Coexpression of ERF6 enhanced luciferase activity driven by ROSE7. The deficient mutants of ERF6 showed growth retardation and higher sensitivity to photodamage. ERF6 interacted physically with mitogen-activated protein kinase6 (MPK6) and also served as a substrate of MPK6. MPK6-mediated ERF6 phosphorylation at both serine-266 and serine-269 affected the dynamic alternation of the ERF6 protein, which resulted in changes in ROS-responsive gene transcription. These data might provide new insight into the mechanisms that regulate ROS-responsive gene transcription via a complex of MPK6, ERF6, and the ROSE7/GCC box under oxidative stress or a fluctuating light environment.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献