Permeability and Channel-Mediated Transport of Boric Acid across Membrane Vesicles Isolated from Squash Roots

Author:

Dordas Christos1,Chrispeels Maarten J.2,Brown Patrick H.1

Affiliation:

1. Department of Pomology, University of California, One Shields Avenue, Davis, California 95616 (C.D., P.H.B.); and

2. Department of Biology, University of California, 9500 Gilman Drive, La Jolla, California 92093–0116 (M.J.C.)

Abstract

Abstract Boron is an essential micronutrient for plant growth and the boron content of plants differs greatly, but the mechanism(s) of its uptake into cells is not known. Boron is present in the soil solution as boric acid and it is in this form that it enters the roots. We determined the boron permeability coefficient of purified plasma membrane vesicles obtained from squash (Cucurbita pepo) roots and found it to be 3 × 10−7 ±1.4 × 10−8 cm s−1, six times higher than the permeability of microsomal vesicles. Boric acid permeation of the plasma membrane vesicles was partially inhibited (30%–39%) by mercuric chloride and phloretin, a non-specific channel blocker. The inhibition by mercuric chloride was readily reversible by 2-mercaptoethanol. The energy of activation for boron transport into the plasma membrane vesicles was 10.2 kcal mol−1. Together these data indicate that boron enters plant cells in part by passive diffusion through the lipid bilayer of the plasma membrane and in part through proteinaceous channels. Expression of the major intrinsic protein (MIP) PIP1 in Xenopus laevis oocytes resulted in a 30% increase in the boron permeability of the oocytes. Other MIPs tested (PIP3, MLM1, and GlpF) did not have this effect. We postulate that certain MIPs, like those that have recently been shown to transport small neutral solutes, may also be the channels through which boron enters plant cells.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3