Disruption of Signaling in a Fungal-Grass Symbiosis Leads to Pathogenesis

Author:

Eaton Carla J.1,Cox Murray P.1,Ambrose Barbara1,Becker Matthias1,Hesse Uljana1,Schardl Christopher L.1,Scott Barry1

Affiliation:

1. Institute of Molecular BioSciences (C.J.E., M.P.C., B.A., M.B., B.S.), Bio-Protection Research Centre (C.J.E., M.P.C., B.S.), and Allan Wilson Centre for Molecular Ecology and Evolution (M.P.C., M.B.), Massey University, Palmerston North, 4442, New Zealand; Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (U.H., C.L.S.)

Abstract

Abstract Symbiotic associations between plants and fungi are a dominant feature of many terrestrial ecosystems, yet relatively little is known about the signaling, and associated transcriptome profiles, that define the symbiotic metabolic state. Using the Epichloë festucae-perennial ryegrass (Lolium perenne) association as a model symbiotic experimental system, we show an essential role for the fungal stress-activated mitogen-activated protein kinase (sakA) in the establishment and maintenance of this mutualistic interaction. Deletion of sakA switches the fungal interaction with the host from mutualistic to pathogenic. Infected plants exhibit loss of apical dominance, premature senescence, and dramatic changes in development, including the formation of bulb-like structures at the base of tillers that lack anthocyanin pigmentation. A comparison of the transcriptome of wild-type and sakA associations using high-throughput mRNA sequencing reveals dramatic changes in fungal gene expression consistent with the transition from restricted to proliferative growth, including a down-regulation of several clusters of secondary metabolite genes and up-regulation of a large set of genes that encode hydrolytic enzymes and transporters. Analysis of the plant transcriptome reveals up-regulation of host genes involved in pathogen defense and transposon activation as well as dramatic changes in anthocyanin and hormone biosynthetic/responsive gene expression. These results highlight the fine balance between mutualism and antagonism in a plant-fungal interaction and the power of deep mRNA sequencing to identify candidate sets of genes underlying the symbiosis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference54 articles.

1. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola;Bestwick;Plant Cell,1997

2. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus;Bhabhra;Med Mycol,2005

3. Morphology and development of cross veins in leaves of bread wheat (Triticum aestivum L.);Blackman;Ann Bot (Lond),1971

4. Genomic mining for Aspergillus natural products;Bok;Chem Biol,2006

5. Pathogenic infection and the oxidative defences in plant apoplast;Bolwell;Protoplasma,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3