Overexpression of AtDOF4.7, an Arabidopsis DOF Family Transcription Factor, Induces Floral Organ Abscission Deficiency in Arabidopsis

Author:

Wei Peng-Cheng1,Tan Feng1,Gao Xin-Qi1,Zhang Xiu-Qing1,Wang Gao-Qi1,Xu Heng1,Li Li-Juan1,Chen Jia1,Wang Xue-Chen1

Affiliation:

1. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China (P.-C.W., F.T., X.-Q.G., X.-Q.Z., G.-Q.W., H.X., L.-J.L., J.C., X.-C.W.); State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, People's Republic of China (X.-Q.G.)

Abstract

Abstract After flower pollination, a programmed process called abscission occurs in which unwanted floral organs are actively shed from the main plant body. We found that a member of the DOF (for DNA binding with one finger) transcription factor family, Arabidopsis (Arabidopsis thaliana) DOF4.7, was expressed robustly in the abscission zone. The Arabidopsis 35S::AtDOF4.7 lines with constitutive expression of AtDOF4.7 exhibited an ethylene-independent floral organ abscission deficiency. In these lines, anatomical analyses showed that the formation of the abscission zone was normal. However, dissolution of the middle lamella failed to separate between the cell walls. AtDOF4.7 was identified as a nucleus-localized transcription factor. This protein had both in vitro and in vivo binding activity to typical DOF cis-elements in the promoter of an abscission-related polygalacturonase (PG) gene, PGAZAT. Overexpression of AtDOF4.7 resulted in down-regulation of PGAZAT. AtDOF4.7 interacted with another abscission-related transcription factor, Arabidopsis ZINC FINGER PROTEIN2. Taken together, our results suggest that AtDOF4.7 participates in the control of abscission as part of the transcription complex that directly regulates the expression of cell wall hydrolysis enzymes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3