Identification of the UMP Synthase Gene by Establishment of Uracil Auxotrophic Mutants and the Phenotypic Complementation System in the Marine Diatom Phaeodactylum tricornutum

Author:

Sakaguchi Toshiro1,Nakajima Kensuke1,Matsuda Yusuke1

Affiliation:

1. Research Center for Environmental Bioscience, Department of Bioscience, Kwansei Gakuin University, Sanda 669–1337, Japan

Abstract

Abstract Uridine-5′-monophosphate synthase (UMPS), the critical step of the de novo pyrimidine biosynthesis pathway, which is a housekeeping plastid process in higher plants, was investigated in a marine diatom, the most crucial primary producer in the marine environment. A mutagenesis using an alkylation agent, N-ethyl-N-nitrosourea, was carried out to the marine diatom Phaeodactylum tricornutum. Cells were treated with 1.0 mg mL−1  N-ethyl-N-nitrosourea and were screened on agar plates containing 100 to 300 mg L−1 5-fluoroorotidic acid (5-FOA). Two clones survived the selection and were designated as Requiring Uracil and Resistant to FOA (RURF) 1 and 2. The 50% effective concentration of 5-FOA on growth of RURF1 was about 5 mm, whereas that in wild-type cells was 30 μm. The ability to grow in the absence of uracil was restored by a P. tricornutum gene that potentially encoded UMPS or the human umps gene, HUMPS. Because the P. tricornutum gene was able to restore growth in the absence of uracil, it was designated as ptumps, encoding a major functional UMPS in P. tricornutum. RNA interference to the ptumps targeting the 5′ region of ptumps resulted in the occurrence of a clear RURF phenotype in P. tricornutum. This RNA interference phenotype was reverted to the wild type by the insertion of HUMPS, confirming that the ptumps encodes UMPS. These results showed direct evidence of the occurrence of novel-type UMPS in a marine diatom and also revealed the potential usage of this gene silencing and complementation system for molecular tools for this organism.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3