Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice

Author:

Fu Jing1,Liu Hongbo1,Li Yu1,Yu Huihui1,Li Xianghua1,Xiao Jinghua1,Wang Shiping1

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China

Abstract

Abstract Breeding crops with the quality of broad-spectrum disease resistance using genetic resources is one of the principal goals of crop improvement. However, the molecular mechanism of broad-spectrum resistance remains largely unknown. Here, we show that GH3-2, encoding an indole-3-acetic acid (IAA)-amido synthetase, mediates a broad-spectrum resistance to bacterial Xanthomonas oryzae pv oryzae and Xanthomonas oryzae pv oryzicola and fungal Magnaporthe grisea in rice (Oryza sativa). IAA, the major form of auxin in rice, results in rice more vulnerable to the invasion of different types of pathogens, which is at least partly due to IAA-induced loosening of the cell wall, the natural protective barrier of plant cells to invaders. X. oryzae pv oryzae, X. oryzae pv oryzicola, and M. grisea secrete IAA, which, in turn, may induce rice to synthesize its own IAA at the infection site. IAA induces the production of expansins, the cell wall-loosening proteins, and makes rice vulnerable to pathogens. GH3-2 is likely contributing to a minor quantitative trait locus for broad-spectrum resistance. Activation of GH3-2 inactivates IAA by catalyzing the formation of an IAA-amino acid conjugate, which results in the suppression of expansin genes. Thus, GH3-2 mediates basal resistance by suppressing pathogen-induced IAA accumulation. It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3