Distinct Gene Expression Profiles in Egg and Synergid Cells of Rice as Revealed by Cell Type-Specific Microarrays

Author:

Ohnishi Takayuki1,Takanashi Hideki1,Mogi Mirai1,Takahashi Hirokazu1,Kikuchi Shunsuke1,Yano Kentaro1,Okamoto Takashi1,Fujita Masahiro1,Kurata Nori1,Tsutsumi Nobuhiro1

Affiliation:

1. Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan (T. Ohnishi, H. Takanashi, M.M., H. Takahashi, N.T.); Department of Life Sciences, Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa 214–8571, Japan (S.K., K.Y.); Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan (T. Okamoto); and Gene

Abstract

Abstract Double fertilization in flowering plants refers to a process in which two sperm cells, carried by the pollen tube, fertilize both the egg and the central cell after their release into a synergid cell of the female gametophyte. The molecular processes by which the female gametophytic cells express their unique functions during fertilization are not well understood. Genes expressed in egg and synergid cells might be important for multiple stages of the plant reproductive process. Here, we profiled genome-wide gene expression in egg and synergid cells in rice (Oryza sativa), a model monocot, using a nonenzymatic cell isolation technique. We found that the expression profiles of the egg and synergid cells were already specified at the micropylar end of the female gametophyte during the short developmental period that comprises the three consecutive mitotic nuclear divisions after megaspore generation. In addition, we identified a large number of genes expressed in the rice egg and synergid cells and characterized these genes using Gene Ontology analysis. The analysis suggested that epigenetic and posttranscriptional regulatory mechanisms are involved in the specification and/or maintenance of these cells. Comparisons between the rice profiles and reported Arabidopsis (Arabidopsis thaliana) profiles revealed that genes enriched in the egg/synergid cell of rice were distinct from those in Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference41 articles.

1. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1;Amien;PLoS Biol,2010

2. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J R Stat Soc B,1995

3. Constitutive expression of a somatic heat-inducible hsp70 gene during amphibian oogenesis;Billoud;Development,1993

4. Lack of heat-shock response in preovulatory mouse oocytes;Curci;Dev Biol,1987

5. An ultrastructural study of embryo sac in Oryza sativa L;Dong;Acta Bot Sin,1989

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3