The Chloroplast Permease PIC1 Regulates Plant Growth and Development by Directing Homeostasis and Transport of Iron

Author:

Duy Daniela1,Stübe Roland1,Wanner Gerhard1,Philippar Katrin1

Affiliation:

1. Biochemie und Physiologie der Pflanzen (D.D., R.S., K.P.) and Ultrastrukturforschung (G.W.), Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, D–82152 Planegg-Martinsried, Germany

Abstract

Abstract The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3