Affiliation:
1. Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CA Utrecht, The Netherlands (R.S., L.A.C.J.V., R.P.); Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4 (C.C.C.); Ecophysiology of Plants, University of Groningen, 9750AA Haren, The Netherlands (M.S., J.T.M.E.); Department of Developmental Biology and Neurosciences, Graduate
Abstract
Abstract
Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献