Affiliation:
1. School of Biological Sciences (Y.D., H.C., C.L.) and Department of Chemistry (I.K.C.), The University of Hong Kong, Hong Kong, China
Abstract
Abstract
C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic origin from O-glycosylflavonoids. In rice (Oryza sativa), a C-glucosyltransferase (OsCGT) that accepts 2-hydroxyflavanone substrates and a dehydratase activity that selectively converts C-glucosyl-2-hydroxyflavanones to 6C-glucosylflavones were recently described. In this study, we provide in vitro and in planta evidence that the rice P450 CYP93G2 protein encoded by Os06g01250 is a functional flavanone 2-hydroxylase. CYP93G2 is related to the CYP93B subfamily, which consists of dicot flavone synthase II enzymes. In the presence of NADPH, recombinant CYP93G2 converts naringenin and eriodictyol to the corresponding 2-hydroxyflavanones. In addition, CYP93G2 generates 2-hydroxyflavanones, which are modified by O-glycosylation in transgenic Arabidopsis (Arabidopsis thaliana). Coexpression of CYP93G2 and OsCGT in Arabidopsis resulted in the production of C-glucosyl-2-hydroxyflavanones in the dibenzoylmethane tautomeric form. The same structure was reported previously for the in vitro OsCGT reaction products. Thus, CYP93G2 generates 2-hydroxyflavanone substrates from flavanones for C-glucosylation by OsCGT in planta. Furthermore, knocking down Os06g01250 in rice (O. sativa subsp. japonica 'Zhonghua 11') preferentially depleted the accumulation of C-glycosylapigenin, C-glycosylluteolin, and C-glycosylchrysoeriol but did not affect the levels of tricin, which is frequently present as O-glycosides in cereals. Taken together, our work conclusively assigned CYP93G2 as the first enzyme that channels flavanones to C-glycosylflavone biosynthesis in rice.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献