Polymethylated Myricetin in Trichomes of the Wild Tomato Species Solanum habrochaites and Characterization of Trichome-Specific 3′/5′- and 7/4′-Myricetin O-Methyltransferases

Author:

Schmidt Adam1,Li Chao1,Shi Feng1,Jones A. Daniel1,Pichersky Eran1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109–1048 (A.S., E.P.); Department of Chemistry (C.L., F.S., A.D.J.) and Department of Biochemistry and Molecular Biology (A.D.J.), Michigan State University, East Lansing, Michigan 48824

Abstract

Abstract Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in flowers, leaves, and seeds. Highly methylated, nonglycosylated derivatives of the flavonoid myricetin flavonoid, have been previously reported from a variety of plants, but O-methyltransferases responsible for their synthesis have not yet been identified. Here, we show that secreting glandular trichomes (designated types 1 and 4) and storage glandular trichomes (type 6) on the leaf surface of wild tomato (Solanum habrochaites accession LA1777) plants contain 3,7,3′-trimethyl myricetin, 3,7,3′,5′-tetramethyl myricetin, and 3,7,3′,4′,5′-pentamethyl myricetin, with gland types 1 and 4 containing severalfold more of these compounds than type 6 glands and with the tetramethylated compound predominating in all three gland types. We have also identified transcripts of two genes expressed in the glandular trichomes and showed that they encode enzymes capable of methylating myricetin at the 3′ and 5′ and the 7 and 4′ positions, respectively. Both genes are preferentially expressed in secreting glandular trichome types 1 and 4 and to a lesser degree in storage trichome type 6, and the levels of the proteins they encode are correspondingly higher in types 1 and 4 glands compared with type 6 glands.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference68 articles.

1. Constituents of glandular trichomes of Tithonia diversifolia: relationships to herbivory and antifeedant activity;Ambrósio;Phytochemistry,2008

2. Polyphenols from the roots of Plumbago rosea;Ariyanathan;Indian J Chem Sect B Org Chem Incl Med Chem,2010

3. Myricetin glycosides from Licania densiflora;Braca;Fitoterapia,2001

4. Flavonoids: new roles for old molecules;Buer;J Integr Plant Biol,2010

5. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations;Cacace;Phytochemistry,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3