Lipid Droplets Mediate Salt Stress Tolerance in Parachlorella kessleri  1

Author:

You Zaizhi123,Zhang Qi123,Peng Zhou123,Miao Xiaoling123

Affiliation:

1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

2. Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

3. Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract Microalgae are known to respond to salinity stress via mechanisms that include accumulation of compatible solutes and synthesis of antioxidants. Here, we describe a salinity-tolerance mechanism mediated by lipid droplets (LDs). In the alga Parachlorella kessleri grown under salt-stress conditions, we observed significant increases in cell size and LD content. LDs that were closely grouped along the plasma membrane shrank as the plasma membrane expanded, and some LDs were engulfed by vacuoles. Transcriptome analysis showed that genes encoding lysophospholipid acyltransferases (LPLATs) and phospholipase A2 were significantly up-regulated following salt stress. Diacylglycerol kinase and LPLAT were identified in the proteome of salt-induced LDs, alongside vesicle trafficking and plastidial proteins and histone H2B. Analysis of fatty acid composition revealed an enrichment of C18:1 and C18:2 at the expense of C18:3 in response to salt stress. Pulse-chase experiments further suggested that variations of fatty acid composition were associated with LDs. Acetate stimulation research further confirmed a positive role of LDs in cell growth under salt stress. These results suggest that LDs play important roles in salt-stress tolerance, through harboring proteins, participating in cytoplasmic component recycling, and providing materials and enzymes for membrane modification and expansion.

Funder

National Natural Science Foundation of China

National High Technology Research and Development Program (863 Program) of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3