Cytokinin Import Rate as a Signal for Photosynthetic Acclimation to Canopy Light Gradients

Author:

Boonman Alex1,Prinsen Els1,Gilmer Frank1,Schurr Ulrich1,Peeters Anton J.M.1,Voesenek Laurentius A.C.J.1,Pons Thijs L.1

Affiliation:

1. Plant Ecophysiology Group, Institute of Environmental Biology, Utrecht University, 3584 CA, Utrecht, The Netherlands (A.B., A.J.M.P., L.A.C.J.V., T.L.P.); Department of Biology, Laboratory for Plant Biochemistry and Physiology, University of Antwerpen, B–2020 Antwerpen, Belgium (E.P.); and Institute for Phytosphere Research, Forschungszentrum Jülich, 52425 Juelich, Germany (F.G., U.S.)

Abstract

Abstract Plants growing in dense canopies are exposed to vertical light gradients and show photosynthetic acclimation at the whole-plant level, resulting in efficient photosynthetic carbon gain. We studied the role of cytokinins transported through the transpiration stream as one of probably multiple signals for photosynthetic acclimation to light gradients using both tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). We show that substantial variation in leaf transpiration parallels the light gradient in tobacco canopies and experimental reduction of the transpiration rate of a leaf, independent of light, is sufficient to reduce photosynthetic capacity in both species, as well as transcript levels of the small subunit of Rubisco (rbcS) gene in Arabidopsis. Mass spectrometric analysis of xylem sap collected from intact, transpiring tobacco plants revealed that shaded leaves import less cytokinin than leaves exposed to high light. In Arabidopsis, reduced transpiration rate of a leaf in the light is associated with lower cytokinin concentrations, including the bioactive trans-zeatin and trans-zeatin riboside, as well as reduced expression of the cytokinin-responsive genes ARR7 and ARR16. External application of cytokinin to shaded leaves rescued multiple shade effects, including rbcS transcript levels in both species, as did locally induced cytokinin overproduction in transgenic tobacco plants. From these data, we conclude that light gradients over the foliage of a plant result in reduced cytokinin activity in shaded leaves as a consequence of reduced import through the xylem and that cytokinin is involved in the regulation of whole-plant photosynthetic acclimation to light gradients in canopies.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3