Developmental and Embryo Axis Regulation of Gibberellin Biosynthesis during Germination and Young Seedling Growth of Pea

Author:

Ayele Belay T.1,Ozga Jocelyn A.1,Kurepin Leonid V.1,Reinecke Dennis M.1

Affiliation:

1. Plant Physiology and Molecular Biology Research Group, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (B.T.A., J.A.O., D.M.R.); and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4 (L.V.K.)

Abstract

Abstract The expression patterns of five genes (PsGA20ox1, PsGA20ox2, PsGA3ox1, PsGA2ox1, and PsGA2ox2) encoding five regulatory gibberellin (GA) biosynthesis enzymes (two GA 20-oxidases, a GA 3β-hydroxylase, and two GA 2β-hydroxylases) were examined to gain insight into how these genes coordinate GA biosynthesis during germination and early postgermination stages of the large-seeded dicotyledonous plant pea (Pisum sativum). At the time the developing embryo fills the seed coat, high mRNA levels of PsGA20ox2 (primarily responsible for conversion of C20-GAs to GA20), PsGA2ox1 (primarily responsible for conversion of GA20 to GA29), and PsGA2ox2 (primarily responsible for conversion of GA1 to GA8) were detected in the seeds, along with high GA20 and GA29 levels, the enzymatic products of these genes. Embryo maturation was accompanied by a large reduction in PsGA20ox2 and PsGA2ox1 mRNA and lower GA20 and GA29 levels. However, PsGA2ox2 transcripts remained high. Following seed imbibition, GA20 levels in the cotyledons decreased, while PsGA3ox1 mRNA and GA1 levels increased, implying that GA20 was being used for de novo synthesis of GA1. The presence of the embryo axis was required for stimulation of cotyledonary GA1 synthesis at the mRNA and enzyme activity levels. As the embryo axis doubled in size, PsGA20ox1 and PsGA3ox1 transcripts increased, both GA1 and GA8 were detectable, PsGA2ox2 transcripts decreased, and PsGA2ox1 transcripts remained low. Cotyledonary-, root-, and shoot-specific expression of these GA biosynthesis genes and the resultant endogenous GA profiles support a key role for de novo GA biosynthesis in each organ during germination and early seedling growth of pea.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3