Carbon Balance and Circadian Regulation of Hydrolytic and Phosphorolytic Breakdown of Transitory Starch

Author:

Weise Sean E.1,Schrader Stephen M.1,Kleinbeck Kyle R.1,Sharkey Thomas D.1

Affiliation:

1. Department of Botany, University of Wisconsin, Madison, Wisconsin 53726

Abstract

Abstract Transitory starch is formed in chloroplasts during the day and broken down at night. Transitory starch degradation could be regulated by light, circadian rhythms, or carbon balance. To test the role of these potential regulators, starch breakdown rates and metabolites were measured in bean (Phaseolus vulgaris) and Arabidopsis (Arabidopsis thaliana) plants. In continuous light, starch and maltose levels oscillated in a circadian manner. Under photorespiratory conditions, transitory starch breakdown occurred in the light faster than at night and glucose-6-P (G6P) was elevated. Nonaqueous fractionation showed that the increase in G6P occurred in the chloroplast. When Arabidopsis plants lacking the plastidic starch phosphorylase enzyme were placed under photorespiratory conditions, G6P levels remained constant, indicating that the increased chloroplastic G6P resulted from phosphorolytic starch degradation. Maltose was increased under photorespiratory conditions in both wild type and plants lacking starch phosphorylase, indicating that regulation of starch breakdown may occur at a point preceding the division of the hydrolytic and phosphorolytic pathways. When bean leaves were held in N2 to suppress photosynthesis and Suc synthesis without increasing photorespiration, starch breakdown did not occur and maltose and G6P levels remained constant. The redox status of the chloroplasts was found to be oxidized under conditions favoring starch degradation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3