Iron Deficiency in Cyanobacteria Causes Monomerization of Photosystem I Trimers and Reduces the Capacity for State Transitions and the Effective Absorption Cross Section of Photosystem I in Vivo

Author:

Ivanov Alexander G.1,Krol Marianna1,Sveshnikov Dmitry1,Selstam Eva1,Sandström Stefan1,Koochek Maryam1,Park Youn-Il1,Vasil'ev Sergej1,Bruce Doug1,Öquist Gunnar1,Huner Norman P.A.1

Affiliation:

1. Department of Biology and The Biotron, University of Western Ontario, London, Ontario, Canada N6A 5B7 (A.G.I., M. Krol, N.P.A.H.); Department of Plant Physiology, University of Umeå, Umea S–901 87, Sweden (A.G.I., D.S., E.S., S.S., G.O.); Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (M. Koochek, S.V., D.B.); and Department of Biology, Chungnam Nati

Abstract

Abstract The induction of the isiA (CP43′) protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43′ proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43′-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43′ does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43′ as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3