The Plant Structure Ontology, a Unified Vocabulary of Anatomy and Morphology of a Flowering Plant

Author:

Ilic Katica1,Kellogg Elizabeth A.1,Jaiswal Pankaj1,Zapata Felipe1,Stevens Peter F.1,Vincent Leszek P.1,Avraham Shulamit1,Reiser Leonore1,Pujar Anuradha1,Sachs Martin M.1,Whitman Noah T.1,McCouch Susan R.1,Schaeffer Mary L.1,Ware Doreen H.1,Stein Lincoln D.1,Rhee Seung Y.1

Affiliation:

1. Department of Plant Biology, Carnegie Institution, Stanford, California 94305 (K.I., L.R., N.T.W., S.Y.R.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (E.A.K.); Department of Plant Breeding, Cornell University, Ithaca, New York 14853 (P.J., A.P., S.R.M.); Missouri Botanical Garden, St. Louis, Missouri 63121 (F.Z., P.F.S.); Cold Spring Harbor Laboratory, Cold Spring H

Abstract

Abstract Formal description of plant phenotypes and standardized annotation of gene expression and protein localization data require uniform terminology that accurately describes plant anatomy and morphology. This facilitates cross species comparative studies and quantitative comparison of phenotypes and expression patterns. A major drawback is variable terminology that is used to describe plant anatomy and morphology in publications and genomic databases for different species. The same terms are sometimes applied to different plant structures in different taxonomic groups. Conversely, similar structures are named by their species-specific terms. To address this problem, we created the Plant Structure Ontology (PSO), the first generic ontological representation of anatomy and morphology of a flowering plant. The PSO is intended for a broad plant research community, including bench scientists, curators in genomic databases, and bioinformaticians. The initial releases of the PSO integrated existing ontologies for Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa); more recent versions of the ontology encompass terms relevant to Fabaceae, Solanaceae, additional cereal crops, and poplar (Populus spp.). Databases such as The Arabidopsis Information Resource, Nottingham Arabidopsis Stock Centre, Gramene, MaizeGDB, and SOL Genomics Network are using the PSO to describe expression patterns of genes and phenotypes of mutants and natural variants and are regularly contributing new annotations to the Plant Ontology database. The PSO is also used in specialized public databases, such as BRENDA, GENEVESTIGATOR, NASCArrays, and others. Over 10,000 gene annotations and phenotype descriptions from participating databases can be queried and retrieved using the Plant Ontology browser. The PSO, as well as contributed gene associations, can be obtained at www.plantontology.org.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3