Identification of Drought Tolerance Determinants by Genetic Analysis of Root Response to Drought Stress and Abscisic Acid

Author:

Xiong Liming1,Wang Rui-Gang1,Mao Guohong1,Koczan Jessica M.1

Affiliation:

1. Donald Danforth Plant Science Center, St. Louis, Missouri 63132

Abstract

AbstractDrought stress is a common adverse environmental condition that seriously affects crop productivity worldwide. Due to the complexity of drought as a stress signal, deciphering drought tolerance mechanisms has remained a major challenge to plant biologists. To develop new approaches to study plant drought tolerance, we searched for phenotypes conferred by drought stress and identified the inhibition of lateral root development by drought stress as an adaptive response to the stress. This drought response is partly mediated by the phytohormone abscisic acid. Genetic screens using Arabidopsis (Arabidopsis thaliana) were devised, and drought inhibition of lateral root growth (dig) mutants with altered responses to drought or abscisic acid in lateral root development were isolated. Characterization of these dig mutants revealed that they also exhibit altered drought stress tolerance, indicating that this root response to drought stress is intimately linked to drought adaptation of the entire plant and can be used as a trait to access the elusive drought tolerance machinery. Our study also revealed that multiple mechanisms coexist and together contribute to whole-plant drought tolerance.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3