A Transgenic Approach to Understanding the Influence of Carbonic Anhydrase on C18OO Discrimination during C4 Photosynthesis

Author:

Cousins Asaph B.1,Badger Murray R.1,von Caemmerer Susanne1

Affiliation:

1. Molecular Plant Physiology Group (A.B.C., M.R.B., S.v.C.) and ARC Centre of Excellence in Plant Energy Biology (M.R.B.), Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia

Abstract

Abstract The oxygen isotope composition of atmospheric CO2 is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C4 plants the carbonic anhydrase (CA)-catalyzed interconversion of CO2 and bicarbonate (HCO3  −) is an essential first reaction for C4 photosynthesis but also plays an important role in the CO2-H2O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO2 and water. The C4 dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CAleaf) has been used to test whether changing leaf CA activity influences online measurements of C18OO discrimination (Δ18O) and the proportion of CO2 in isotopic equilibrium with leaf water at the site of oxygen exchange (θ). The Δ18O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO2 assimilation, was less than predicted by models of Δ18O. Additionally, Δ18O was sensitive to small decreases in CAleaf. However, reduced CA activity in F. bidentis had little effect on net CO2 assimilation, transpiration rates (E), and stomatal conductance (g  s) until CA levels were less than 20% of wild type. The values of θ determined from measurements of Δ18O and the 18O isotopic composition of leaf water at the site of evaporation (δ  e) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of θ were always significantly lower than the values of θ predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C4 leaf may not represent the CA activity associated with the CO2-H2O oxygen exchange and therefore may not be a good predictor of θ during C4 photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict θ in C4 plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3