Maize cDNAs Expressed in Endosperm Encode Functional Farnesyl Diphosphate Synthase with Geranylgeranyl Diphosphate Synthase Activity

Author:

Cervantes-Cervantes Miguel1,Gallagher Cynthia E.1,Zhu Changfu1,Wurtzel Eleanore T.1

Affiliation:

1. Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York 10468 (M.C.-C., C.E.G., C.Z., E.T.W.); and the Graduate School and University Center, City University of New York, New York, New York 10016 (M.C.-C., E.T.W.)

Abstract

Abstract Isoprenoids are the most diverse and abundant group of natural products. In plants, farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors to many isoprenoids having essential functions. Terpenoids and sterols are derived from FPP, whereas gibberellins, carotenoids, casbenes, taxenes, and others originate from GGPP. The corresponding synthases (FPP synthase [FPPS] and GGPP synthase [GGPPS]) catalyze, respectively, the addition of two and three isopentenyl diphosphate molecules to dimethylallyl diphosphate. Maize (Zea mays L. cv B73) endosperm cDNAs encoding isoprenoid synthases were isolated by functional complementation of Escherichia coli cells carrying a bacterial gene cluster encoding all pathway enzymes needed for carotenoid biosynthesis, except for GGPPS. This approach indicated that the maize gene products were functional GGPPS enzymes. Yet, the predicted enzyme sequences revealed FPPS motifs and homology with FPPS enzymes. In vitro assays demonstrated that indeed these maize enzymes produced both FPP and GGPP and that the N-terminal sequence affected the ratio of FPP to GGPP. Their functionality in E. coli demonstrated that these maize enzymes can be coupled with a metabolon to provide isoprenoid substrates for pathway use, and suggests that enzyme bifunctionality can be harnessed. The maize cDNAs are encoded by a small gene family whose transcripts are prevalent in endosperm beginning mid development. These maize cDNAs will be valuable tools for assessing the critical structural properties determining prenyl transferase specificity and in metabolic engineering of isoprenoid pathways, especially in cereal crops.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3