Affiliation:
1. Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Agro-M, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, 34060 Montpellier cedex 1, France
Abstract
Abstract
The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} transport system (HATS) that plays a crucial role in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} uptake by the plant. Although NRT2.1 was known to be induced by \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} concentration decreases to a low level (<0.5 mm) in media containing a high concentration of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} or Gln (≥1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} is specifically mediated by the NRT1.1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} in the presence of a reduced N source. Under low \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}/\mathrm{high{\,}NH}_{4}^{{+}}\) \end{document} provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} toxicity because \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} taken up by the HATS in this situation prevents the detrimental effects of pure \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} demand of the plant in relation to the various specific roles that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document}.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology